		RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)	
		FIRST YEAR [2015-18] B.A./B.Sc. FIRST SEMESTER (July – December) 2015 Mid-Semester Examination, September 2015	
Dat	e : :	14/09/2015 COMPUTER SCIENCE (Honours)	Full Marke · FO
IIM	e :	II is a sonerate A new Pook for each group]	Fuil Marks : 50
		[Use a separate Answer book for each group] Groun – A	
		(Answer <u>any one</u> question)	[1×15]
1.	a)	Encode data bits 10110 using Hamming code considering odd parity.	[3]
	b)	Find the minimal POS expression for the following using Quine-McCluskey	method.
		$\Pi M(2,3,8,12,13) \cdot \Pi d(10,14)$	[5]
	c)	Prove transposition theorem of boolean algebra using boolean laws and axionms.	[2]
	d) e)	Subtract $(1110.001)_2$ from $(1000.0101)_2$. Add -25.125_{10} with -28.625_{10} using 12-bit 2's complement arithmetic	[2]
	0)		[3]
2.	a)	Demorganize : $AB(\overline{CD} + \overline{EF})(A\overline{B} + \overline{CD})$	[3]
	b)	Convert the following logic circuit in NOR universal logic.	[3]
	c)	Express the function $Y = A + \overline{B}C$ in canonical POS form.	[3]
	d)	Subtract $106 \cdot 5_{10}$ from $759 \cdot 2_{10}$ in 8421 BCD code using 10's complement method.	[2.5]
	e)	'Roman number system is non-positional' —Justify.	[2]
	1)	Explain now parity is useful in error detection.	[1.5]
		<u>Group – B</u>	
3.	An	swer any one question :	[1×5]
	a)	Explain the function of a priority encoder of your choice. Draw its logic diagram she	owing its
	b)	truin table. Evaluate $X = ((A + B) * C) / D$ using one address and zero address instruction format	[2+3]
An	swer	any three questions :	[3]
4	a)	Realize a D Flin-Flon using I-K Flin-Flon	[2]
٢.	u) b)	Realize a 16:1 Mux using two 8:1 Mux and explain its operation.	[2+2]
	c)	Realize the following boolean function using a 8:1 multiplexer.	[3]
		$F(w, x, y, z) = \sum m(1, 3, 5, 7, 13, 14, 15)$	
5.	a)	Design a 2-bit magnitude comparator circuit and explain its operation.	[3+2]
	b)	How does master-slave flip-flop avoid race-around condition?	[2]
	c)	Design a gray code to binary code converter circuit.	[3]
6.	a)	Draw and explain the instruction cycle.	[6]
	b)	Compare Von neumann and Harvard architecture.	[4]

7.	a)	Realize a 4×4 RAM using 1×1 RAM.	[5]
	b)	Suppose a cache has 256 lines with 16 words. Main memory size is 64K. Show the address format using (i) Direct mapping and (ii) Associative mapping.	[5]
8.	a)	What is cache coherency?	[2]
	b)	Compare synchronous and asynchronous data transfer.	[3]
	c)	Explain the IEEE standard for representing floating point number.	[5]

- × -